
Evolutionary Genetic Algorithms in a Constraint

Satisfaction Problem: Puzzle Eternity II

Jorge Muñoz, German Gutierrez, and Araceli Sanchis

University Carlos III of Madrid
Avda. de la Universidad 30, 28911 Leganés, Spain

{jmfuente,ggutierr,masm}@inf.uc3m.es

Abstract. This paper evaluates a genetic algorithm and a multiobjec-
tive evolutionary algorithm in a constraint satisfaction problem (CSP).
The problem that has been chosen is the Eternity II puzzle (E2), an
edge-matching puzzle. The objective is to analyze the results and the
convergence of both algorithms in a problem that is not purely multi-
objective but that can be split into multiple related objectives. For the
genetic algorithm two different fitness functions will be used, the first
one as the score of the puzzle and the second one as a combination of
the multiobjective algorithm objectives.

1 Introduction

The Eternity II puzzle [1] is a constraint satisfaction problem created as a chal-
lenge, with a prize, to know if someone is able to solve it. The difficulty lies on
the huge search space of the problem, there is not any algorithm that can find a
solution in a reasonable time. It is an edge-matching puzzle with 256 tiles that
are differents one to each other. The tiles have a color pattern in each of its
edges and there are not two tiles with the same color pattern in all their edges.
All the tiles must be placed in a 16× 16 board, and can be rotated 90o, 180o or
270o before being placed. There are tiles with a grey pattern in their edges that
must be placed in the corners and the borders of the board. These grey edges
must be placed next to the border. There is also known the cell and position of
one of the tiles but we will omited this information because it is irrelevant for
the objectives of this paper.

If we use the information about the tiles that have to be placed into the
corners and the border of the board, then the search space of this problem
is approximately 4196 · 196! � 10485. A more accurate approximation can be
calculated with the Equation 1 where n is the number of tiles.

S = 4! + (4 · (√n − 2))! + 4(
√

n−2)2 · ((√n − 2)2)!

� 4(
√

n−2)2 · ((√n − 2)2)! (1)

Our objective is not to solve the puzzle, but satisfy the greatest number
of constraints with evolutionary algorithms in the minimum possible time. A

J. Cabestany et al. (Eds.): IWANN 2009, Part I, LNCS 5517, pp. 720–727, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Nota adhesiva
Published in: Bio-inspired systems: computational and ambient intelligence, 10th International Work-Conference on Artificial Neural Networks, IWANN 2009, Proceedings, Part I. Springer, 2009 (Lecture notes in computer science, vol. 5517), pp. 720-727

Evolutionary Genetic Algorithms in a Constraint Satisfaction Problem 721

constraint is the join of two adjacent edges of tiles, if the adjacent edges match
then the constraint is satisfied. We do not bear in mind the edges that must
be placed in the border of the board, only the inner ones among tiles. We will
called the number of constraints satisfied the score. In a squared board of m×m
cells the maximum score that can be reached is obtained by Equation 2. For the
Eternity II the maximum score is 480.

score = m · (m − 1) + (m − 1) · m = 2 · m · (m − 1) (2)

The edge-matching puzzles are NP-complete problems [2], specifically they
are constraint satisfaction problems (CSPs) [3]. When the problem is computa-
tionally intractable and we want to satisfy the maximum number of constraints
we call it a MAXSAT [4] problem and here is where an evolutionary algorithm
can be used [5].

In the rest of the document it will be shown some related work of evolution-
ary algorithms in combinatorial problems (Section 2), a description of the search
algorithms used (Section 3), the experimental results of the evolutionary algo-
rithms with different parameters (Section 4) and, finally, the conclusions and
future works (Section 5).

2 Related Work

Constraint satisfaction problems are solved through two different techniques:
inference and search; although sometimes a combination of both is used [6,3].
The inference modifies the problem to create another one that is easier to solve,
normally this change is made with domain information. The main algorithms in
inference are the consistency algorithms, also known as constraint propagation
[3]. In search the most known algorithm is backtracking [6], this algorithm es-
sentially performs a depth-first search of the space of potential solutions. The
lack of the search algorithms is that they do not use the domain information to
improve the search and they repeat the same mistakes, that is, they repeat lot
of times searches that do not lead to a solution and could be avoided with some
domain information.

The exhaustive search is the unique algorithm that grants to find a solution if
it exists, but in problems with big search space this algorithm is useless because
the time required to finish. So in this sort of problems, like some MAXSAT,
a local search is performed instead of an exhaustive search. The local search
algorithms starts with a set of assigned variables and tries to allocate the rest
of variables. When it is reached a situation where a constraint is violated the
algorithm modify the values of the variables that break the constraint. The best
known results in the Eternity II were obtained with an algorithm of these features
that uses an hibridization of constraint propagation and very large neighborhood
stochastic local search [7], it satisfies 458 of the 480 constraints.

Another way to find solutions in a MAXSAT problem is through the use of evolu-
tionary algorithms [8]. Some of the algorithms in the literature are SAWEA [9,10],
RFEA [11,12], FlipGa [13], ASAP [14] and genetic algorithm [5], although a clasic
algorithm as FC-CBJ [15] outperforms these kind of evolutionary algorithms [16].

722 J. Muñoz, G. Gutierrez, and A. Sanchis

3 Search Algorithms

Besides the genetic algorithm and the multiobjective evolutionary algorithm, we
have used an exhaustive search algorithm and random search. The exhaustive
search is a backtracking algorithm that places the tiles in the board but with
an improvement. When the maximal deep of search is reached, instead of do the
backtracking in that moment, the algorithm continues browsing the board and
placing tiles in the right way with the cells where any tile can be placed left in
blank. When it finishes the backtracking is performed.

Next, it will be seen a brief description of the evolutionary algorithms and
the two fitness functions used in the genetic algorithms.

3.1 Genetic Algorithm (GA)

In the experiments we have used a simple genetic algorithm with elitism and
tournament selection. Codification, crossover, mutation and fitness function will
be described below.

The representation of a solution is a bidimensional matrix where each cell
contains a tile and its orientation. This representations keeps the spacial relations
among the adjacent tiles between generations, so specific crossover operator and
mutation have to be used.

The crossover operator for the coding is based on the regions exchange. Two
parents are selected, then a region of random size in a random point is chosen.
Then the outer cells of the region are copied into the offspring from one of the
parents, and the inner from the other one. In this operation it has to bear in
mind that there can not be duplicated or missed tiles, this must be avoided. An
example of the crossover operator is shown in Fig. 1.

Fig. 1. A simple example of crossover

The mutation operators are two, when a mutation is going to be applied only
one of the operators is chosen randomly. One mutation operator is the region
exchange (Fig. 2(a)), this operator exchanges two regions of the same size that
are not overlap. The second mutation operator is the region rotation (Fig. 2(b)),
this operator rotates a squared region.

Evolutionary Genetic Algorithms in a Constraint Satisfaction Problem 723

(a) Exchange (b) Rotation

Fig. 2. Examples of mutations

For crossover and mutation operators, the height and width of the regions
are chosen randomly between two bounds. The minimum size of the region for
crossover is 2 and the maximum 8, and for mutation the bounds are 1 and 10.

In this algorithm two fitness functions have been used, both of them will try to
be minimized. The maximum value of this fitness functions is 1 and the minimum
is 0, where 0 also means that the puzzle is solved. The first one, called the normal
fitness, it is one minus the normalized score (see Equation 3). The second fitness
is a combination of the three objectives in the multiobjevite algorithm, so it is
called the combined fitness. The equation to calculate this combined fitness is
shown in Equation 4 where k is the number of objectives, objectivei is the value
of the objective i and max objectivei is the maximum value of the objective i (in
Section 3.2 the objectives will be described).

normal fitness = 1 − score
480

(3)

combined fitness = 1 −
(

1
k
·

k∑
i=1

objectivei

max objectivei

)
(4)

3.2 MultiObjective Evolutionary Algorithm (MOEA)

The multiobjective evolutionary algorithm has been developed from the concepts
used in the NSGA-II algorithm [17]. But three modifications have been done to
improve the performance in the problem. The chromosome, crossover operator
and mutation operator are the same as in the genetic algorithms we saw before.

The first improvement is how the dominance is calculated. Instead of use
fronts of dominance, the dominance of one individual is calculated by counting
the number of individuals that dominate that individual. This is faster than
calculate the fronts of dominance.

The second improvement is how the distance among individuals is calculated.
Only the distances among the individuals of the pareto front are calculated. This
distance is through the diversity in the values of the objectives of the individuals.
If the same objective in both individuals has different values the distance between
that individuals is increased one unit, thus the maximum distance between two
individuals is the number of objectives and the minimum is 0.

724 J. Muñoz, G. Gutierrez, and A. Sanchis

(a) Objective 1 (b) Objective 2 (c) Objective 3

Fig. 3. The three objectives of the MOEA

The third improvement is the number of elitism individuals that are copied
from one generation to the next one. Only a fixed number of individuals in the
pareto front are copied. The first ones that are copied are those ones which have
more distance with the rest of individuals.

The objectives that have to be maximized for the problem are three:

– Objective 1 : The score of the puzzle explained in Section 1 (Fig. 3(a)). The
maximum value of this objective is 480 and the minimum is 0.

– Objective 2 : The number of square regions of four tiles (2 × 2 regions) that
match in their adjacent inner sides (Fig 3(b)). The maximum value is 225
and the minimum is 0.

– Objective 3 : The number of tiles that have their four sides matched with the
adjacent tiles (Fig. 3(c)). The maximum value is 256 and the minimum is 0.

4 Experimental Results

In the experimentation it has been launched a random algorithm (RAND),
the exhaustive search (ES) explained in the beginning of Section 3, a genetic

Table 1. Results

Experiment Algorithm Cross. Mut. Elit. Fitness Max. Min. Mean Std. Dev.

RAND RAND - - - - 49 45 46.5 ± 1.02
ES ES - - - - 369 357 363.7 ± 3.66
GA1 GA 9000 999 1 norm 316 286 295.9 ± 7.76
GA2 GA 5000 4999 1 norm 160 151 157.3 ± 2.53
GA3 GA 7500 2500 0 norm 130 75 106.7 ± 18.48
GA1C GA 9000 999 1 comb 355 337 347.9 ± 6.5
GA2C GA 5000 4999 1 comb 357 146 210.4 ± 90.03
GA3C GA 7500 2500 0 comb 366 348 357.5 ± 5.48
MOEA1 MOEA 9000 990 10 - 367 345 353.7 ± 6.56
MOEA2 MOEA 5000 4990 10 - 371 350 361.7 ± 5.1

Evolutionary Genetic Algorithms in a Constraint Satisfaction Problem 725

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1e+07 2e+07 3e+07 4e+07 5e+07

S
co

re

Evaluations

RAND

ES

GA1

GA2

GA3

GA1C

GA2C

GA3C
MOEA1

MOEA2

Fig. 4. Evolution of the score in the experiments

algorithm (GA) and a multiobjective evolutionary algorithm (MOEA). Both
evolutionary algorithms have been executed with different values for crossover,
mutation and elitism, but the population has been 10000 individuals for all
experiments and the tournament is always of size 3. The results of the experi-
ments are shown in Table 1. First column (Experiment) shows the experiment
name. Second column (Alg.) is the algorithm used in that experiment. Next three
columns are the number of individuals that are generated for the next genera-
tion by crossover (Cross.), mutation (Mut.) and elitism (Elit.) respectively. The
next column (Fitness) is the sort of fitness that have been used in the genetic
algorithm: normal fitness (norm) or combined fitness (comb). In the next three
columns are shown the minimum (Min.), maximum (Max.) and mean (Mean)
value of the bests scores of the puzzles in the experiments. For these columns
the higher value is the better is, with a maximum value of 480. The last column
(Std. Dev.) is the standard deviation of the experiments. Empty cells (‘-’) mean
that parameter is not used in the algorithm. Each experiment was executed 10

726 J. Muñoz, G. Gutierrez, and A. Sanchis

times and each time it was running until 5 · 107 evaluations, a evaluation means
each time the fitness of an individual is obtained.

Fig. 4 shows the evolution of best average score of the experiments. The x-axis
is the number of evaluations and the y-axis is the average best score. The name
of the experiment is shown next to its line, just top-left of the line.

5 Conclusions and Future Works

The best result was obtained in the MOEA2 experiment with a score of 371 over
480, but the best average score was obtained with the exhaustive search (ES),
363.7 over 480.

The genetic algorithm with the normal fitness got better results with a higher
crossover rate and the experiment GA1 got the best results among then. There
also notice that the experiment without elitism (GA3) got very bad results, it
looks like it was slower to converge. In the genetic algorithm with combined
fitness the results were better than with normal fitness and converged faster.
But unlike before, here the experiment without elitism (GA3C) got the best
results and converged almost as fast as the experiment with the higest crossover
rate (GA1C). The difference between use a normal fitness or combined one
without elitism is incredible huge, the algorithm goes from a results near the
random search (RAND) to results very close the better ones (ES). If we compare
the experiments GA2 and GA2C, where the only difference is that the second
one uses a combined fitness, the results were better in GA2C but the standar
deviation increased a lot.

Between the two multiobjective experiments, MOEA1 converged faster than
MOEA2 but this second one got better results, closer to the exhaustive search.

In future works we will compare these results with more evolutionary algo-
rithms like SAWEA or FlipGA and with more specific algorithms for CSPs like
FC-CBJ.

Acknowledgment

This work was supported in part by the Carlos III University of Madrid under
grant PIF UC3M01-0809 and by the Ministry of Science and Innovation under
project TRA2007-67374-C02-02.

References

1. Tomy: Eternity II (official site) (November 2008), http://www.eternityii.com
2. Demaine, E., Demaine, M.: Jigsaw Puzzles, Edge Matching, and Polyomino Pack-

ing: Connections and Complexity. Graphs and Combinatorics 23, 195–208 (2007)
3. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
4. Raman, V., Ravikumar, B., Rao, S.S.: A simplified NP-complete MAXSAT prob-

lem. Information Processing Letters 65(1), 1–6 (1998)

Evolutionary Genetic Algorithms in a Constraint Satisfaction Problem 727

5. Rana, S., Whitley, D.: Genetic algorithm behavior in the MAXSAT domain. In:
Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS,
vol. 1498, pp. 785–794. Springer, Heidelberg (1998)

6. Kumar, V.: Algorithms for Constraint-Satisfaction Problems: A Survey. AI Maga-
zine 13(1), 32–44 (1992)

7. Pierre Schaus, Y.D.: Hybridization of CP and VLNS for Eternity II. JFPC (2008)
8. Gottlieb, J., Marchiori, E., Rossi, C.: Evolutionary Algorithms for the Satisfiability

Problem. Evolutionary Computation 10(1), 35–50 (2002)
9. Bäck, T., Eiben, A., Vink, M.: A Superior Evolutionary Algorithm for 3-SAT. In:

Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 125–136. Springer,
Heidelberg (1998)

10. Eiben, A., van der Hauw, J.: Solving 3-SAT with adaptive Genetic Algorithms. In:
Proceedings of the 4th IEEE Conference on Evolutionary Computation, pp. 81–86
(1997)

11. Gottlieb, J., Voss, N.: Improving the performance of evolutionary algorithms for the
satisfiability problem by refining functions. In: Eiben, A.E., Bäck, T., Schoenauer,
M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 755–764. Springer,
Heidelberg (1998)

12. Gottlieb, J., Voss: Adaptive fitness functions for the satisfiability problem. In: Deb,
K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao,
X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 621–630. Springer, Heidelberg (2000)

13. Marchiori, E., Rossi, C.: A flipping genetic algorithm for hard 3-SAT problems. In:
Proceedings of the Genetic and Evolutionary Computation Conference, vol. 1, pp.
459–465 (1999)

14. Rossi, C., Marchiori, E., Kok, J.N.: An adaptive evolutionary algorithm for the
satisfiability problem. In: Proceedings of the 2000 ACM symposium on Applied
computing, vol. 1, pp. 463–469 (2000)

15. Haralick, R.M., Elliott, G.L.: Increasing Tree Search Efficiency for Constraint Sat-
isfaction Problems. Artificial Intelligence 14(3), 263–313 (1980)

16. Craenen, B., Eiben, A., van Hemert, J.: Comparing evolutionary algorithms on
binary constraint satisfaction problems. IEEE Transactions on Evolutionary Com-
putation 7(5), 424–444 (2003)

17. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester (2001)

